Graphene oxide for high-efficiency separation membranes: Role of electrostatic interactions
نویسندگان
چکیده
منابع مشابه
Carbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor
We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...
متن کاملApplication of Functionalized Graphene Oxide Nanosheet in Gas Separation
Graphene oxide nanosheet (GONS) can be a suitable membrane for gas separation with high permeability and selectivity. Separation of N2/CO2 using functionalized GONS was investigated by molecular dynamics simulations. The simulated systems were comprised of two types of GONS with a pore in their center, N2 and CO2 molecules. The selectivity and ...
متن کاملHigh yield preparation of macroscopic graphene oxide membranes.
Graphene oxide membranes up to 2000 microm(2) in size can be synthesized with 90% yield in bulk quantities through a microwave-assisted chemical method. Membranes are readily visualized on an oxidized silicon substrate, which enables efficient fabrication of electronic devices and sensors. Field effect transistors made of the membrane show ambipolar behavior, and their conductivity is significa...
متن کاملElectrostatic interactions of asymmetrically charged membranes
We predict the nature (attractive or repulsive) and range (exponentially screened or long-range power law) of the electrostatic interactions of oppositely charged, planar plates as a function of the salt concentration and surface charge densities (whose absolute magnitudes are not necessarily equal). An analytical expression for the crossover between attractive and repulsive pressure is obtaine...
متن کاملSize Effects of Graphene Oxide on Mixed Matrix Membranes for CO2 Separation
Graphene oxide (GO)-polyether block amide (PEBA) mixed matrix membranes were fabricated and the effects of GO lateral size on membranes morphologies, microstructures, physicochemical properties, and gas separation performances were systematically investigated. By varying the GO lateral sizes (100–200 nm, 1–2 lm, and 5–10 lm), the polymer chains mobility, as well as the length of the gas channel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Carbon
سال: 2016
ISSN: 0008-6223
DOI: 10.1016/j.carbon.2016.09.005